Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2019

Course Code: MA101

Course Name: CALCULUS

Max. Marks: 100

Duration: 3 Hours

PART A	
Answer all questions, each carries 5 marks.	Marks

1	a)	Check the convergence of the series $\sum_{k=1}^{\infty} \left(\frac{3k-4}{4k-5}\right)^k$	(2)		
	b)	Find the Maclaurin series of $f(x) = \frac{1}{1+x}$, up to 3 terms	(3)		
2	a)	If $z = (3x - 2y)^4$, find $\frac{\partial^4 \pi}{\partial x \partial y^3}$	(2)		
	b)	If $w = \log(\tan x + \tan y + \tan z)$ then prove that	(3)		
		$\sin 2x \frac{\partial w}{\partial x} + \sin 2y \frac{\partial w}{\partial y} + \sin 2z \frac{\partial w}{\partial y} = 2$			
3	a)	Find the speed of a particle moving along the path $x = 2\cos t$, $y = 2\sin t$, $z = t$	(2)		
		at $t = \pi/2$			
	b)	If $y'(t) = \cos t \ i + \sin t \ j$; $y(0) = i - j$. Find $y(t)$.	(3)		
4	a)	Evaluate $\int_0^1 \int_0^{x^2} \int_0^2 dy dz dx$	(2)		
	b)	Evaluate $\iint xy$ dx dy over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and lying	(3)		
5	a)	in the first quadrant. Show that $F(x, y) = 2xy^3i + 3x^2y^2j$ is conservative.	(2)		
	b)	$ \bar{t}\bar{v}-v\bar{v} < v\bar{v}$ and $v = \bar{v} $ arous that $\nabla = \frac{\bar{v}}{\bar{v}} = 0$	(3)		
		If $r = xi + yj + zk$ and $r = r $, prove that $y = \frac{1}{r^3} - 0$			
6	a)	Evaluate by Stoke's theorem $\oint_{\mathcal{C}} \left(e^x dx + 2y dy - dz ight)$, where \mathcal{C} is the curve	(2)		
		$x^2 + y^2 = 4, \ z = 2$			
	b)	Using Green's theorem evaluate $\int_{\mathcal{C}} x dy - y dx$ where \mathcal{C} is the circle $x^2 + y^2 = 4$	(3)		
	PART B				
	Module 1				

Answer any two questions, each carries 5 marks.

7 Test for convergence of the series
$$\sum_{k=1}^{\infty} \frac{1}{(8k^2 - 3k)^{1/2}}$$
 (5)

8 Find the radius of convergence and interval of convergence of the power (5)
series
$$\sum_{k=0}^{\infty} \frac{(2x-1)^k}{3^{2k}}$$
.

(5)

A1100

Show that the series
$$\sum_{k=1}^{\infty} (-1)^k \left(\frac{k}{k+1}\right)^{k^2}$$
 is convergent.

Module 11 Answer any two questions, each carries 5 marks.

10 Let
$$w = \sqrt{x^2 + y^2 + z^2}$$
, where $x = \cos \theta$, $y = \sin \theta$, $z = \tan \theta$. Find $\frac{dw}{d\theta}$ at (5) $\theta = \frac{\pi}{4}$, using chain rule.

Find the local linear approximation
$$L(x, y)$$
 to $f(x, y) = \ln (xy)$ at the point (5)
 $P(1,2)$. Compare the error in approximating f by L at the point $Q(1.01,2.01)$
with the distance between P and Q .

$$f(x,y) = xy + \frac{8}{x} + \frac{8}{y}.$$

Module 1II

Answer any two questions, each carries 5 marks.

- 13 Find the unit tangent T(t) and unit normal N(t) to the curve (5) $x = a \cos t, y = a \sin t, z = ct$ a >0
- 14 Find the velocity and position vectors of the particle, if the acceleration vector (5) $a(t) = \sin t i + \cos t j + e^t k$; v(0) = k; r(0) = -i + k.
- 15 Find the equation of the tangent line to the curve of intersection of surfaces (5) $z = x^2 + y^2$ and $3x^2 + 2y^2 + z^2 = 9$ and the point (1,1,2).

Module 1V Answer any two questions, each carries 5 marks.

- 16 Evaluate by reversing the order of integration $\int_{0}^{a/\sqrt{2}} \int_{y}^{\sqrt{a^{2}-y^{2}}} x \, dx \, dy$ (5)
- 17 Evaluate $\iint_{R} xy \, dA$, where R is the sector in the first quadrant bounded by (5) $y = \sqrt{x}, \ y = 6 - x, \ y = 0.$

18 Evaluate
$$\int_0^1 \int_{y^2}^1 \int_0^{1-x} x \, dz \, dx \, dy$$
 (5)

9

A1100

Module V

Answer any three questions, each carries 5 marks.

19	Find the work done by $F(x, y) = (x^2 + y^2)i - xj$ along the curve	(5)
	$C: x^2 + y^2 = 1$ counter clockwise from (1,0) to (0,1)	
20	Determine whether $F(x, y) = 6y^2 i + 12xy j$ is a conservative vector field. If	(5)
	so find the potential function for it.	
21	Find the divergence and curl of the vector field	(5)
	$F(x, y, z) = xyz^{2}i + yzx^{2}j + zxy^{2}k$	
22	Prove that $\int_{\mathcal{C}} (x^2 - yz)\overline{i} + (y^2 - zx)\overline{j} + (z^2 - xy)\overline{k}$. $d\overline{r}$ is independent of the path	(5)

and evaluate the integral along any curve from (0,0,0) to (1,2,3).

23 If
$$\bar{r} = x \bar{i} + y \bar{j} + z \bar{k}$$
 and $r = ||\bar{r}||$, prove that $\nabla^2 f(r) = \frac{2}{r} f'(r) + f''(r)$. (5)

Module VI

Answer any three questions, each carries 5 marks.

- 24 Using Green's theorem evaluate $\int_{C} (xy + y^2) dx + x^2 dy$ where *C* is the boundary (5) of the region bounded by $y = x^2$ and $x = y^2$
- 25 Evaluate the surface integral $\iint_{\sigma} z^2 ds$, where σ is the portion of the curve (5) $z = \sqrt{x^2 + y^2}$ between z = 1 and z = 3
- 26 Determine whether the vector field F(x, y, z) is free of sources and sinks. If not, (5) locate them.

$$i)F(x, y, z) = (y + z)\overline{i} - xz\overline{j} + x^2 siny \overline{k}$$

$$ii)F(x, y, z) = x^3\overline{i} + y^3\overline{j} + 2z^3\overline{k}$$

27 Use divergence theorem to find the outward flux of the vector field (5)

$$F(x, y, z) = (2x + y^2)i + xy j + (xy - 2z)k$$
 across the surface σ of the tetrahedron bounded by $x + y + z = 2$ and the coordinate planes.

Using Stoke's theorem evaluate $\int_{C} \overline{F} \cdot d\overline{r}$; where $\overline{F} = xy\overline{i} + yz\overline{j} + xz\overline{k}$; (5) *C* triangular path in the plane x + y + z = 1 with vertices at (1,0,0), (0,1,0) and (0,0,1) in the first octant
